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C O N S P E C T U S

Among the growing collection of molecular systems under consideration for nanoscale device applications, mechani-
cally interlocked compounds derived from electrochemically switchable bistable [2]rotaxanes and [2]catenanes show

great promise. These systems demonstrate dynamic, relative movements between their components, such as shuttling and
circumrotation, enabling them to serve as stimuli-responsive switches operated via reversible, electrochemical
oxidation-reduction rather than through the addition of chemical reagents. Investigations into these systems have been
intense for a number of years, yet limitations associated with their synthesis have hindered incorporation of their mechan-
ical bonds into more complex architectures and functional materials.

We have recently addressed this challenge by developing new template-directed synthetic protocols, operating under both
kinetic and thermodynamic control, for the preparation of bistable rotaxanes and catenanes. These methodologies are com-
patible with the molecular recognition between the π-electron-accepting cyclobis(paraquat-p-phenylene) (CBPQT4+) host and
complementary π-electron-donating guests. The procedures that operate under kinetic control rely on mild chemical trans-
formations to attach bulky stoppering groups or perform macrocyclizations without disrupting the host-guest binding of
the rotaxane or catenane precursors. Alternatively, the protocols that operate under thermodynamic control utilize a revers-
ible ring-opening reaction of the CBPQT4+ ring, providing a pathway for two cyclic starting materials to thread one another
to form more thermodynamically stable catenaned products. These complementary pathways generate bistable rotaxanes
and catenanes in high yields, simplify mechanical bond formation in these systems, and eliminate the requirement that the
mechanical bonds be introduced into the molecular structure in the final step of the synthesis.

These new methods have already been put into practice to prepare previously unavailable rotaxane architectures and
novel complex materials. Furthermore, the potential for utilizing mechanically interlocked architectures as device compo-
nents capable of information storage, the delivery of therapeutic agents, or other desirable functions has increased signif-
icantly as a result of the development of these improved synthetic protocols.

Introduction

The mechanical bonds and noncovalent forces

that hold together the separate components in

mechanically interlocked molecules give rise to

relative motions, such as circumrotation and

shuttling, which can be used in solid-state

devices, for example, ultradense molecular

memory circuits.1 Bistable [2]rotaxanes and

[2]catenanes, which incorporate the cyclobis(par-

aquat-p-phenylene) cyclophane CBPQT4+ as a

π-electron-accepting ring component, are particu-

larly well suited to these applications, because
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their switching actions can be controlled by the reversible oxi-

dation of their π-electron-donating primary recognition sites,

for example, tetrathiafulvalene (TTF). This feature allows these

bistable molecules to be switched across a range of different

environments, without the addition of chemical reagents.

Since their emergence2 almost two decades ago, virtually

every member of these classes of compounds has been syn-

thesized using kinetically controlled “clipping” approaches (Fig-

ure 1) in which a partially formed CBPQT4+ ring recognizes a

dumbbell or macrocycle containing complementary π-elec-

tron-rich recognition unit. This recognition process templates

the final bond-forming step, which results in closure of the

ring. Moderate yields, long reaction times, operationally chal-

lenging reaction conditions (12 kbar pressure), and the incom-

patibility of the CBPQT4+ ring to most subsequent chemical

transformations limit the practical utility of this approach to the

preparation of bistable [2]rotaxanes and [2]catenanes. These

shortcomings represent serious challenges to the further

development of increasingly sophisticated donor-acceptor

mechanically interlocked compounds.

A key realization in the establishment of improved syn-

thetic protocols for these compounds (Figure 2) is that the non-

covalent bonding interactions, which template their synthesis,

live on in the final structures and, indeed, are crucial for their

subsequent function. Thus, kinetically controlled reactions,

where these stabilizing forces are retained in the transition

state, can be expected to give mechanically interlocked com-

pounds in high yields. Furthermore, these compounds are

lower in free energy than their nonmechanically interlocked

components, suggesting that their synthesis under thermody-

namic control should also be highly efficient. This approach

employs reversible reactions to ultimately provide the most

thermodynamically stable products, even if less stable side

products are formed during the course of the reaction.

Donor-acceptor mechanically interlocked compounds had

not been synthesized previously under these conditions, which

offer unique advantages relative to kinetically controlled

approaches, such as the dynamic exchange of less stable

mechanical bonds for more stable ones.

Our recent success in developing both types of synthetic

methodologies is a direct result of our investigations of mild

chemical transformations compatible with the CBPQT4+ ring

and its host-guest complexes. This Account describes the

development of new kinetically and thermodynamically con-

trolled protocols for the preparation of donor-acceptor rotax-

anes and catenanes and the use of these new protocols for

the incorporation of mechanical bonds into increasingly com-

plex molecules.

Highly Efficient Kinetically Controlled
Syntheses of [2]Rotaxanes
The CBPQT4+ cyclophane binds π-electron-rich aromatic sys-

tems, such as 1,5-dioxynaphthalene (DNP) and tetrathiaful-

valene (TTF) with high association constants (Ka ≈ 105 M-1 for

oligo(ethylene glycol)-bearing derivatives).3 Consequently, the

1:1 complexes are the dominant species in DMF or MeCN

solutions containing the cyclophane and a DNP or TTF deriv-

ative at concentrations (1-200 mM) used typically in prepar-

FIGURE 1. The template-directed clipping reaction used historically
for the formation of CBPQT4+ rings and mechanical bonds in
donor-acceptor rotaxanes (and catenanes).

FIGURE 2. Both kinetic (left) and thermodynamic (right) control can
be exercised in the catenanes synthesis. Kinetically controlled
reactions proceed through (a) pseudorotaxane formation, followed
by (b) an irreversible ring closure. Thermodynamically controlled
methods rely on (c) reversible ring opening of the CBPQT4+

cyclophane, followed by the (d) coordination to a crown ether, and
finally (e) reversible ring closure.
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ative procedures. Hence, synthetic transformations that are

sufficiently mild so as to be compatible with the complex for-

mation can, in principle, be used either (i) to attach bulky stop-

pers, affording rotaxanes, or (ii) to effect macrocylizations,

affording catenanes, both in high yield. Until recently, few

such transformations were known, largely because of the sen-

sitivity of the CBPQT4+ ring toward nucleophiles and bases.

We have found, however, that mild conditions, excellent func-

tional group tolerance, complete regioselectivity, and the high

efficiency of the Cu(I)-catalyzed azide-alkyne cycloaddition4,5

(CuAAC) make it an ideal reaction for the formation of

mechanical bonds under kinetic control.6 The protocol is

exemplified (Scheme 1) by the synthesis of the [2]rotaxane

3 · 4PF6. The cyclophane CBPQT · 4PF6 is threaded by the

DNP derivative 1, bearing two triethyleneglycol chains termi-

nated by azide groups, forming the pseudorotaxane

[1⊂CBPQT] · 4PF6. The addition of the bulky propargyl ether

2 with its tetraarylmethane core, along with catalytic amounts

of CuSO4 ·5H2O and ascorbic acid, resulted in the efficient for-

mation of the [2]rotaxane 3 · 4PF6. Notably, the formation of

the corresponding dumbbell, the CuAAC product without the

encircling CBPQT4+ ring, was not observed, even when only

a slight excess of CBPQT4+ (1.05 equiv relative to 1) was

employed in the reaction. No doubt inspired by the increas-

ing use of the CuAAC reaction in materials science7 and bio-

chemistry,8 several researchers have used this approach

successfully to prepare [2]rotaxanes of other kinds.9 A partic-

ularly elegant example is the one described by Leigh and

co-workers10in which the Cu(I) ions serve both as catalytic and

templating elements in the formation of the rotaxane.

Syntheses of [n]Catenanes under Kinetic
and Thermodynamic Control
A similar kind of “click chemistry” strategy (Figure 2a,b) was

employed in the synthesis (Scheme 2) of [2]catenanes,11 sim-

ply by performing a macrocyclization of a DNP derivative,

whose oligo(ethylene glycol) chains are terminated at one end

by an alkyne and at the other by an azide in the presence of

CBPQT4+. The efficiency of the macrocyclization was inves-

tigated12 as a function of ring size by subjecting the [2]pseu-

dorotaxanes [4a-c⊂CBPQT] · 4PF6 to either the conditions

employed for the synthesis of 3 · 4PF6 or CuI in MeCN. These

conditions gave the corresponding [2]catenanes 5b · 4PF6 and

5c · 4PF6 in 41% and 23% isolated yields, respectively. The

[2]pseudorotaxane [4a⊂CBPQT] · 4PF6, however, failed to

react, and only 4a and CBPQT · 4PF6 were recovered, possi-

bly because the glycol chains of 4a are too short to form a

macrocycle free of significant ring strain.

The successful syntheses of the [2]rotaxane 3 · 4PF6 and the

catenanes 5b · 4PF6 and 5c · 4PF6 demonstrate that the cop-

per acetylides, which most likely serve as intermediates in the

CuAAC reaction, are compatible with the chemically sensitive

CBPQT4+ and its pseudorotaxane-like host-guest complexes.

We have also investigated the likelihood of [2]catenane for-

mation employing other reactions, such as the Eglinton oxi-

dative alkyne homocoupling,13 which also proceed through

SCHEME 1. Template-Directed Synthesis of the [2]Rotaxane 3 · 4PF6

Using the CuAAC Methodology

SCHEME 2. Template-Directed Synthesis of Donor-Acceptor
[2]Catenanes 5a-c · 4PF6 and 7a-c · 4PF6 with Varying Sizes of the
DNP-Containing Macrocycles Using Either the CuAAC or Eglinton
Oxidative Alkyne Homocoupling

Efficient Formation of Mechanical Bonds Dichtel et al.
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Cu-acetylide intermediates. In addition to the more symmet-

rical nature of the starting materials and products, we found

the same trends in yields relative to the oligo(ethylene gly-

col) chain lengths during the formation of the catenanes

7a-c · 4PF6, as was observed for those using the CuAAC

approach. The dialkyne-containing catenanes, however, were

formed in significantly improved yields, as exemplified most

notably in the synthesis of 7b · 4PF6, which was isolated in

97% yield, reflecting a remarkably efficient macrocyclization

process. As observed in the case of [4a⊂CBPQT] · 4PF6, no

catenane was obtained during the attempted cyclization of the

pseudorotaxane [6a⊂CBPQT] · 4PF6: a single-crystal X-ray

structural analysis of this pseudorotaxane also suggested that

the oligo(ethylene glycol) chains of 6a are far too short to

form a strain-free macrocycle.

The noncovalent bonding interactions between the com-

ponents of catenanes and rotaxanes stabilize these molecules

significantly relative to the sum of their individual components

lacking mechanical bonds. This pronounced energetic bias

renders dynamic covalent chemistry (DCC)14,15 appealing for

the synthesis (Figure 2c-e) of mechanically interlocked com-

pounds. DCC depends on thermodynamically controlled reac-

tions that recycle the starting materials and the side products

until equilibria favoring the mechanically interlocked com-

pounds as the most stable ones are established. We have

shown16 recently that a thermodynamically controlled nucleo-

philic substitution can provide an efficient route to

donor-acceptor catenanes incorporating the CBPQT4+ ring. In

this research, tetrabutylammonium iodide (TBAI) was

employed as the catalyst in a “magic ring” experiment, in

which the CBPQT4+ ring was first of all opened and then

reversibly closed around a crown ether ring to form a

donor-acceptor catenane. Mechanistically, this transforma-

tion commences (Scheme 3) with a rate-limiting nucleophilic

attack of TBAI onto the CBPQT4+ ring to generate the trica-

tion 83+. TBAI was chosen as the catalyst because it is a good

nucleophile, a good leaving group, a poor reducing agent, and

soluble in MeCN. The tricationic π-acceptor 83+ complexes

readily17 with crown ethers such as 9a-c to give pseudoro-

taxanes [8⊂9]3+. Nucleophilic attack then occurs, closing the

CBPQT4+ ring around the crown ethers to give catenanes

10a-c4+, regenerating the iodide ion. The reversibility of the

overall reaction was confirmed by an exchange experiment.

The preformed [2]catenane 10a4+ was treated with an excess

of the crown ether 9b, which has been shown to associate

more strongly with CBPQT4+ and presumably with the trica-

tion 83+. After equilibrium was reached over the course of 11

days, the more stable [2]catenane 10b4+ constituted about

∼90% of the final reaction mixture.

Since the reaction proceeds only at elevated temperatures

(∼80 °C), the equilibration can be arrested on cooling to room

temperature, a property that allows the convenient isolation of

the catenated products. The approach is general in scope, is

easy to execute (since protecting atmospheres and dry sol-

vents are not required), and proceeds in yields as high as

93%. In the context of molecular devices, the bistable cat-

enane 10c4+ was prepared in a straightforward manner by

dynamic nucleophilic substitution in 60% yield, that is, almost

three times more efficiently than by using18 the traditional

kinetically controlled approach. We have, however, failed thus

far to extend this method to the synthesis of rotaxanes. Our

rationalization for this failure is that at the elevated tempera-

tures required for reaction to occur, the association of the

π-electron-accepting 83+ with an acyclic π-donating dumb-

bell is less favorable compared with the association of 83+

with a much more constrained π-donating macrocycle. How-

ever, on going from the CBPQT4+ ring to cyclobis(paraquat-

4,4′-biphenylene), a larger π-accepting ring that associates19

with crown ethers with 1:2 stoichiometry, we were able to pre-

pare20 the respective [3]catenanes, derived from 9a and 9b,

in yields greater than 84% and 91%, respectively. This virtu-

ally undiminished efficiency of conversion suggests that even

larger mechanically interlocked systems, including perhaps the

elusive donor-acceptor polycatenanes, could be targeted by

the protocol involvolving dynamic nucleophilic substitution.

SCHEME 3. Mechanism for the Template-Directed Synthesis of
Various Donor-Acceptor [2]Catenanes (10a-c4+) under
Thermodynamic Control
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Formation of Higher Order Rotaxanes
Using CuAAC
One of the most significant challenges toward realizing the

long-standing objective to incorporate multiple CBPQT4+ rings

into higher order rotaxane architectures and ultimately into a

wide variety of materials is the modest efficiency of the clip-

ping reaction and the low convergence that characterized the

strategy associated with its synthesis. For example, the simul-

taneous clipping of two CBPQT4+ rings onto a bistable dumb-

bell afforded21 only 9% of the desired [3]rotaxane, which

represents one of the most complex compounds of this kind

that can be prepared practically using this synthetic approach.

No longer constrained by the requirement of performing the

clipping reaction on a fully formed dumbbell template in the

final step of the synthesis, retrosynthetic analysis of a palin-

dromic [3]rotaxane structure suggested a disconnection in the

middle of the molecule, with the simultaneous formation of

the final structure and incorporation of the CBPQT4+ rings

using the CuAAC reaction. Indeed, a similar, albeit simplified,

palindromic [3]rotaxane, 13 · 8PF6, was synthesized6 (Scheme

4) from the stoppered DNP azide 11, the bis(propargyl ether)

12, and CBPQT · 4PF6 in a significantly improved 79% iso-

lated yield. Furthermore, by substitution of tris-1,3,5(4′-ethy-

nylphenyl)benzene 14 for 12, the branched [4]rotaxane

15 · 12PF6 was obtained in 72% isolated yield and represents

the first example of a donor-acceptor [4]rotaxane prepared in

our laboratory. The good yields obtained during the synthe-

sis of these higher order rotaxanes point to a significant

advantage of the CuAAC stoppering approach, since there is

essentially no penalty in the yields of the compounds when

incorporating multiple cyclophanes into the molecules.

We have subsequently elaborated this methodology to

enable the one-pot synthesis of rotaxanes with two differ-

ent stoppers, employing sequential CuAAC reactions.22 The

order of the two cycloadditions is controlled by protecting

the alkyne functions with trimethylsilyl (TMS) groups, which

are then removed after the first CuAAC reaction is complete.

Though methods commonly employed for alkyne desilyla-

tion occur under more strongly nucleophilic conditions and

are thus not compatible with the presence of the CBPQT4+

ring, we confirmed that Ag(I)-catalyzed hydrolysis of the

TMS groups23 is compatible with both the presence of the

CBPQT4+ ring and carrying out the subsequent CuAAC reac-

tions in the same pot. In order to highlight the efficiency of

this methodology, the 3-fold symmetric amphiphilic

[4]rotaxane 21 · 12PF6 was synthesized24 (Scheme 5) in

one-pot, by (a) performing the CuAAC reaction between the

monofunctional DNP derivative 17 and the triazide 16, (b)

the removal of the silyl protecting groups, and (c) the sec-

ond stoppering reaction with the hydrophilic azide 20 in the

presence of the CBPQT4+ ring. The complexity of the final

products available from comparatively simple starting mate-

SCHEME 4. Template-Directed Synthesis of the [3]- and [4]Rotaxanes 13 · 8PF6 and 15 · 12PF6 through CuAAC of a Stoppered DNP-Derivative
with Bi- and Trifunctional Alkynes
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rials using this strategy is noteworthy, and as a conse-

quence of identifying mild and efficient desilylation

conditions, the introduction of the CBPQT4+ ring need not

occur in the final step of the synthesis of the rotaxane. We

are currently taking advantage of these features to design

and synthesize previously unavailable topologies of

mechanically interlocked donor-acceptor compounds.

Shuttling and Switching within Triazole-
Containing [2]Rotaxanes
An important aspect of the development of the CuAAC thread-

ing-followed-by-stoppering synthetic approach involved an

investigation of whether the incorporation of disubstituted

1,2,3-triazole units into the dumbbell components of [2]rotax-

anes would impact significantly either (i) the thermally acti-

vated or (ii) electrochemically controlled motions of the

CBPQT4+ ring. The former situation was investigated25 by

measuring (Figure 3) the rate of shuttling of the cyclophane

between two degenerate DNP recognition sites separated by

a bis(triazole)-containing central spacer unit in the molecular

shuttle 21 · 4PF6. When the motion of the CBPQT4+ ring is

slow on the NMR time scale, the resonances of protons on

opposite sides of the dumbbell separate into two signals of

equal intensity. See, for example, the resonances for the t-Bu

(Ha, Ha′) and i-Pr (Hb, Hb′) protons in the partial spectrum

recorded at 261 K in Figure 3. The frequency of the shuttling

increases with temperature, resulting eventually in the coa-

lescence of the two pairs of signals at 309 K, corresponding

to an energy barrier of 15.5 ( 0.1 kcal mol-1. This value is

similar to those measured previously26 for degenerate molec-

ular shuttles containing triphenylene and tetra(ethylene gly-

col) spacers (15.0 ( 0.2 and 15.5 ( 0.1 kcal mol-1,

respectively). These findings suggest that the disubstituted

1,2,3-triazole rings may be incorporated into rotaxanes and

may even be located between the recognition sites without

significant concern that they will interfere with the movement

of the CBPQT4+ ring.

SCHEME 5. One-Pot Sequential Template-Directed Synthesis of an Amphiphilic [4]Rotaxane 21 · 12PF6

SCHEME 6. Template-Directed CuAAC-Mediated Synthesis of an
Electrochemically Switchable Bistable [2]Rotaxane 23 · 4PF6

Efficient Formation of Mechanical Bonds Dichtel et al.
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Satisfied that the disubstituted 1,2,3-triazole units do not

disrupt the thermally activated shuttling of the CBPQT4+ ring,

we went on to assess their compatibility with the electrochem-

ical switching processes of bistable [2]rotaxanes. The proto-

typical bistable [2]rotaxane 23 · 4PF6 was prepared (Scheme 6)

through CuAAC-mediated stoppering of the diazide 22 con-

taining both a TTF and a DNP moiety.27 The 1H NMR spec-

trum of 23 · 4PF6 in CD3COCD3, in common with those of

other bistable [2]rotaxanes of this type, indicated the domi-

nant presence (>95%) of the TTF-encircled translational iso-

mer at equilibrium. The reversibility of the electromechanical

switching process of 23 · 4PF6 is evident (Figure 4) from spec-

troelectrochemical (SEC) measurements. Before the switching

process is initiated (E ) 0 vs Ag wire), the absorbance cen-

tered at 840 nm corresponds to the charge transfer (CT) inter-

action typically observed when a TTF unit is encircled by a

CBPQT4+ ring. Between +0.50 and +0.80 V, new bands

appear with maxima at 445 and 595 nm, corresponding to

the absorbance of the TTF radical cation (TTF•+). These

changes are accompanied by the bleaching of the

TTF-CBPQT4+ CT band. When the applied potential was

increased further, the absorption band of the TTF•+ was

replaced by a new peak with a λmax at 380 nm, which can be

assigned to the TTF dication (TTF2+). In contrast to the TTF•+,

the TTF2+ does not absorb significantly between 500 and 600

nm and so permits the observation of the weak

DNP-CBPQT4+ CT peak at ca. 530 nm. Finally, when the

applied potential is returned to zero, the spectrum gradually

makes its way back to its original state containing the

TTF-CBPQT4+ CT band, verifying the full reversibility of the

redox process. These observations, along with other support-

ing 1H NMR spectroscopic data and the full electrochemical

characterization of 23 · 4PF6, confirmed that the triazole rings

do not interfere with the unique switching mechanisms of

these compounds, paving the way for their incorporation into

range of new material and device architectures.

Incorporating Mechanical Bonds into
Materials and New Environments
The mechanical force and changes associated with the gen-

eration of translational isomers during the electrochemical

switching process of these bistable rotaxanes and catenanes

form the raison d’etre for their incorporation into molecular

electronic devices, nanoelectromechanical systems, and nano-

particle-based controlled release vehicles. These technologi-

FIGURE 3. The two degenerate co-conformations of the 21 · 4PF6 shuttle (left) and portions of the variable-temperature 1H NMR spectra
(500 MHz, CD3COCD3) obtained at different temperatures containing the t-Bu (Ha/Ha′) and i-Pr (Hb/Hb′) resonances.

FIGURE 4. UV-visible spectra obtained during the SEC
measurements (MeCN, 0.25 mV s-1 scan rate) of the CuAAC-derived
bistable [2]rotaxane 23 · 4PF6. The applied potential was changed
from E ) 0 V to E ) 1.22 V and then back to E ) 0 V.

Efficient Formation of Mechanical Bonds Dichtel et al.
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cal applications motivated an investigation of the fundamental

thermodynamic and kinetic parameters of the switching pro-

cesses in a range of condensed environments, such as within

polymer gels,28 self-assembled monolayers (SAMs) on gold

surfaces,29 and molecular switch tunnel junctions (MSTJs).3

The correlation of these parameters across each of these envi-

ronments for several bistable rotaxanes and catenanes pro-

vides compelling evidence for (i) a universal switching

mechanism and (ii) attributing this mechanism to the hyster-

etic response of molecular memory circuits.

The subsequent development of the CuAAC methodology

has greatly enhanced our efforts to prepare new bistable

[2]rotaxanes that can operate in different environments, for

example, the recent development of a derivative that forms

liquid crystalline (LC) phases.30 The ordering of liquid crys-

tals is a cooperative phenomenon that is highly sensitive to

weak perturbations, including the photoisomerization of small

quantities of added molecular rotors.31 Hence, we set out to

align electrochemically switchable bistable [2]rotaxanes within

LC phases as a possible means of amplifying the effect of

molecular switching and so influence the bulk LC ordering.

The bistable [2]rotaxane 24 · 4PF6 (Figure 5) with dendritic

mesogens as stoppers was synthesized by subjecting the diaz-

ide 22 and mesogens functionalized with propargyl ester

groups to the same CuAAC conditions employed for the syn-

thesis of 23 · 4PF6. The convergence of the CuAAC approach

is particularly noteworthy in this case: it allows 22 to be

employed as a general precursor to nearly all symmetrically

stoppered bistable rotaxanes. The high efficiency of the reac-

tion was also critical, because our efforts to attach these

mesogens to threads containing TTF and DNP units under

esterification conditions had been unsuccessful, precluding

even an attempt at synthesizing the mesogenic bistable

[2]rotaxane using the clipping protocol. Compound 24 · 4PF6

exhibits a LC smectic A (SA) phase from 10-150 °C, above

which it undergoes thermal decomposition. Peaks with d spac-

ings of 83.0 (100), 41.5 (200), and 27.3 Å (300) were

observed in its small-angle X-ray scattering (SAXS) pattern

obtained at 40 °C. This layer spacing of ∼8 nm observed for

the SA phase corresponds to the extended molecular length of

24 · 4PF6. The electrochemical switching of 24 · 4PF6, which

was characterized in solution by CV and SEC, was qualitatively

similar to that shown in Figure 4 for 22 · 4PF6. Our current

efforts focus on switching LC assemblies of 24 · 4PF6 while

monitoring its effect on the LC properties of the system as a

whole.

In moving beyond using the CuAAC reaction to facilitate

the synthesis of well-defined [2]-, [3]-, or [4]rotaxanes, we have

recently achieved a long-standing goal of synthesizing

donor-acceptor polyrotaxanes that incorporate a consider-

able number of CBPQT4+ rings.32 We are particularly inter-

ested in studying the effect of electromechanical switching on

the bulk properties of the associated polymer. Relatively few

examples of polyrotaxanes have been reported, with the

exception of those that incorporate more chemically robust

cyclodextrin33 or cucurbituril34 derivatives as the macrocy-

clic component. Donor-acceptor polyrotaxanes have

remained synthetically elusive, mostly because the clipping

reaction is unlikely to provide a high coverage of CBPQT4+

rings onto a stoppered polymer template, that is, dumbbell.

We employed a CuAAC step-growth polymerization to pre-

pare32 (Scheme 7) azide-terminated polymers 27 ranging in

Mn from 32 to 180 kDa by adjusting the feed ratio of the

monomers, bis(triethyleneglycol propargyl ether) DNP deriv-

ative 25 and the DNP diazide 26. Following purification of the

polymers, CBPQT4+ rings were threaded onto the chains, and

alkyne-bearing stoppers were finally attached, once again

using the CuAAC reaction, providing the polyrotaxane

29 · 4nPF6. The use of 0.6 equiv of CBPQT4+ · 4PF6 relative to

the total number of DNP units resulted in polyrotaxanes with

average coverages ranging from 90-58% of the repeat units

FIGURE 5. (a) Structural formula of a mesogenic electrochemically
switchable bistable [2]rotaxane 24 · 4PF6 and (b) illustration of the
hypothetical organization of 24 · 4PF6 into a smectic A phase, as
suggested by small-angle X-ray scattering data.

Efficient Formation of Mechanical Bonds Dichtel et al.
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encircled by CBPQT4+ rings, as measured by integration of the

appropriate 1H NMR resonances.

One of the first unique properties observed in the poly-

rotaxanes is that they fold into a compact structure as a

consequence of secondary intramolecular interactions. By

limiting the CBPQT4+ incorporation to less than 50% of the

available DNP units and using alternating DNP-containing

monomers with differing binding affinities, a majority of the

rings encircle the more favorable DNP units, while the sec-

ondary DNP recognition sites stack on the outside of the

rings. In this manner, the polymer adopts a folded confor-

mation (Figure 6), an effect observed previously35 in aque-

ous solutions of polymers containing alternating π-electron

donors and acceptors and in more rigid polymers and oli-

gomers of certain polyamide36 and m-phenylene ethyl-

ene37 “foldamers”. The folding behavior was characterized

(Figure 7) by several techniques, such as gel permeation

chromatography (GPC), in which the apparent molecular

weight of each polyrotaxane sample was smaller than that

measured for its polymer thread precursor, a phenomenon

that is suggestive of a more compact structure. The nonco-

valent bonding interactions responsible for the folding pro-

cess were further characterized by variable-temperature 1H

NMR spectroscopy of the polyrotaxanes and an oligomeric

model compound. Finally, the lengths of the polyrotaxanes

were found to be significantly shorter than the precursor

polymeric threads, as measured by atomic force micros-

copy performed on the polymers drop-cast onto highly

ordered pyrolytic graphite. Our current work on these poly-

rotaxanes focuses on incorporating TTF monomers into the

polymer backbone, a modification that will allow study of

the electromechanical switching process of the CBPQT4+

rings along the polymer backbone, both in solution and in

the bulk.

Finally, inspired by the increasing use of the CuAAC for

surface functionalization,38-40 we have successfully

attached stoppering groups to surface-bound pseudorotax-

anes, a simple and direct route to simultaneously synthe-

sizing [2]rotaxanes and interfacing them with

nanostructured materials. We have used this approach for

the preparation (Figure 8) of snap-top covered silica nano-

SCHEME 7. CuAAC-Mediated Polymerization and Subsequent
Template-Directed Threading and Stoppering Processes for the
Preparation of the Polyrotaxane 29 · 4nPF6

FIGURE 6. Graphical representation of the synthetic approach
toward the synthesis of CBPQT4+-containing polyrotaxanes and an
idealized representation of the folding observed in these materials
as a consequence of stacking of the alongside DNP units against
the outside of the CBPQT4+ rings.

FIGURE 7. Gel permeation chromatographs of the polymer
thread 27 (Mn ) 32 kDa) and its corresponding polyrotaxane
29 · 4nPF6, in which an average of 90% of the repeat units
contain a CBPQT4+ ring. Although the molecular weight of
29 · 4nPF6 is nearly twice that of 27, the retention volume of the
polyrotaxane increases, a phenomenon that can be attributed to
its folded structure.
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containers (SCSNs).41 An SCSN consists of a [2]rotaxane

tethered to the surface of a silica particle (400 nm in diam-

eter) containing hexagonally arranged 2 nm diameter

pores. The [2]rotaxanes on the surface incorporate R-cyclo-

dextrin (R-CD) rings, each encircling an oligo(ethylene gly-

col) thread and fixed in place by a CuAAC reaction with a

cleavable stopper. When intact, these rotaxanes efficiently

trap guest molecules, such as the fluorescent probe

rhodamine B, within the pores of the silica. However,

hydrolysis of the adamantyl ester-containing stopper, cat-

alyzed by porcine liver esterase, results in dethreading of

the R-CD rings and diffusion of the guest molecules out of

the pores, while noncleavable control stoppers or denatured

samples of the enzyme showed no such evidence of guest

molecule release. Because of the wide range of stopper-

ing units that can be attached to the SCSN precursor, a mul-

titude of snap-top systems with differentiated modes of

activation can be prepared with relative ease. In addition to

further developing the SCSN systems, we anticipate using

the CuAAC reaction, carried out either in solution or through

recently developed microcontact printing techniques,42 to

incorporate new classes of electrochemically active mechan-

ically interlocked compounds into molecular electronic

devices.

Conclusions
As a result of investigating mild chemical transformations

compatible with the tetracationic cyclophane CBPQT4+ that

operate under either kinetic or thermodynamic control, we

have developed template-directed synthetic protocols to pro-

vide well-defined donor-acceptor mechanically interlocked

compounds with increased convergence and reaction effi-

ciency. These complementary advances serve to make

bistable [2]rotaxanes and bistable [2]catenanes of this type

more compatible with a variety of new device architectures

and aid and abet the efficient preparation of previously inac-

cessible compounds, including large well-defined mechani-

cally interlocked compounds and polymers. These synthetic

tools are indispensible as we seek to create complex systems

with emergent properties43 and increasingly sophisticated

functions, especially within device settings.

The collaboration was supported by the Semiconductor

Research Corporation (SRC) and its Focus Centers on Functional

Engineered Nanoarchitectonics (FENA) and Materials Structures

and Devices (MSD), the Moletronics Program of the Defense

Advanced Research Projects Agency (DARPA), and the Center

for Nanoscale Innovation for Defense (CNID). J.M.S. gratefully

acknowledges the National Science Foundation (NSF) for a

Graduate Research Fellowship.

BIOGRAPHICAL INFORMATION

William R. Dichtel received his B.S. in chemistry in 2000 from
MIT and his Ph.D. in 2005 from the University of California, Ber-
keley, under the supervision of Prof. Jean M. J. Fréchet. He was
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